Explore emerging trends and opportunities to maximize the impact of clean-energy research in “Pathways to Net Zero” report.

Table of Contents

Introduction

Pathways to Net Zero: The Impact of Clean Energy Research is based on a study analyzing more than 1.6 million papers from Elsevier’s Scopus database, combining data with content and subject-matter expertise to gain unique insights into how research can accelerate efforts to mitigate climate change. It’s designed to:

  • Provide descriptive insights into dimensions of research collaboration and knowledge transfer of particular relevance to net zero innovation ahead COP26.
  • Serve as an opening to discussions around net zero research and innovation.
  • Act as a springboard for debate on research funding and collaboration, technological choices and policy setting.

Key findings

Between 2001 and 2020, the number of NØEnergy research publications grew rapidly, to a total of 1.6 million, and the field contributed to 4.9% of global publications in 2020, up from 1.2% in 2001. The field also grew faster than research at the world level: it had a compound annual growth rate of 13% between 2001 and 2020, whereas global output grew by over 5% over the same period.

In Scopus, publications are gathered into topic clusters using direct citation analysis. A topic cluster is a collection of publications with a common intellectual interest.

Throughout the analysis period, the most published topic clusters related to lithium-ion batteries, power transmission and grids, solar energy and energy economics.

  • China’s largest topic cluster by number of publications was Lithium Alloys | Secondary Batteries | Electric Batteries. China was also three times more specialized in this cluster than the global average.

  • The United States also published more of its NØEnergy research publications in Lithium Alloys | Secondary Batteries | Electric Batteries than in any other topic cluster. Among the top 20 topic clusters the US published in, it was only more specialized than the global average in Magnetoplasmal Plasmas | Tokamak Devices, which relates to fusion reactors.

  • Among India’s most published topic clusters, the most published was Electric Inverters | Electric Potential | DC-DC Converters, a topic cluster in which it was also highly specialized. India was most specialized in the topic cluster of Engine Cylinders | Biodiesel | Diesel Engines.

  • China published nearly 400,000 NØEnergy research publications between 2001 and 2020, the most of any country. It was followed by the United States (280,000+ publications), India, Germany and Japan. These five countries are also some of the highest producing nations for research publications in general.

Disciplinary diversity

NØEnergy research tends to be focused on a few disciplines, which could limit its ability to produce the societal outcomes needed to combat climate change.

  • The largest topic clusters in this field tend to be comparatively monodisciplinary or record an average level of disciplinary diversity.
    Research related to climate action (SDG 13) is highly diverse, both conceptually and in terms of team composition, whereas publications on clean and affordable energy (SDG 7) are much more uniform in their disciplinarity.

  • The topic cluster displaying the most interdisciplinarity is Air pollution | Particulate matter | Air pollutants.

  • The most collaboratively diverse topic clusters are associated with clean energies, carbon capture or topics that intersect with other environmental concerns.

  • The topic clusters that score most highly for conceptual diversity are those associated with the development and design of consumer products: Models | Applications | Ubiquitous Computing, Authentication | Cryptography | Data Privacy and Intelligent Buildings | Internet | Bluetooth.

International collaboration

Collaboration between research actors is particularly essential in solving societal grand challenges such as climate change. International collaboration has been repeatedly shown to lead to more impactful research.

  • Saudi Arabia /ˈsaudi əˈreibjə/, Singapore, Switzerland and France had the highest shares of international collaboration during 2011-2020. These countries also increased their shares of international collaboration notably from 2001–2010 to 2011–2020.

  • The international collaboration share of NØEnergy research publications increased from 31% in 2011 to 45% in 2020.

  • The topic cluster with the largest share of international collaboration was Magnetoplasma | Plasmas | Tokamak Devices, which relates to the development of fusion reactors.

Global South participation in NØEnergy research

Only a small proportion of NØEnergy research is conducted in and for the Global South. This may be problematic for realizing potential development outcomes from the field.

  • Researchers from Global South countries accounted for a fifth of publication authors in the field. Even smaller proportions of the research include a fieldwork component in Global South locations, limiting opportunities for related development work.

  • The share of international collaborations with at least one author from the Global South increased from 3% to 9% between 2001 and 2020, a positive yet modest improvement.

  • Saudi Arabia had the highest share of publications including a Global South-based co-author (38%). The next largest share on this dimension was held by France at 19%.

  • The two countries with the largest publication outputs in NØEnergy research had notably low shares of collaboration with Global South authors: China’s share was 2% and the United States’ share was 6%.
    Global South-based research tends to be taken up less by colleagues in other scientific communities.

Research levels

  • In the report, we categorize research into four levels: basic research, applied research, engineering–technological mix, and applied technology. Each topic cluster contains a mix of these research levels, and the balance of this mix provides insight into the maturity level of the topic cluster.

The largest topic clusters within NØEnergy research are mainly applied technology dominant, indicating a certain amount of maturity in these clusters. The basic and applied research levels are more dominant in topic clusters related to batteries, photocatalysts, organic light emitting diodes and fuel cells, indicating that these topic clusters are still evolving.

  • Globally, the share of basic research in NØEnergy research remained stable at 8%–9% over the 2001–2020 period, whereas the share of applied technology increased by more than 20 percentage points.

  • For the 2011–2020 period, Singapore had the highest share of basic research, followed by Switzerland, Russia and Japan. South Korea and Japan had notably higher shares of applied research than other countries. Denmark, Iran and Malaysia had the highest shares of applied technology (66% each).

Academic-corporate collaboration

Academic–corporate collaboration on NØEnergy research was more prevalent in European countries, the United States, Canada, Japan and South Korea.

  • Switzerland had the largest share of academic–corporate collaboration on NØEnergy research publications among the most published countries, and the Netherlands had the second largest share. For both countries, this collaboration occurred most often in the topic cluster of Electric Inverters | Electric Potential | DC-DC Converters.

  • Among the largest topic clusters, Magnetoplasma | Plasmas | Tokamak Devices (related to fusion reactors) and Wind Power | Electric Power Transmission Networks | Electric Power Distribution had the highest shares of academic–corporate collaboration.

Corporates in NØEnergy

European corporates produce a large share of NØEnergy research publications, with Chinese companies starting to overtake them. But overall, shares of corporate publications in the field are declining, and few of the largest emitters produce any significant research output.

  • Between 2011 and 2020, the contribution of corporates to overall NØEnergy research output declined from 9% to 5%. This decline was not a global trend, however. Corporate output from the United States declined by 4% over the period, whereas the corporate output from China increased by 21%.

  • Japan and Switzerland had the largest shares of corporate sector output, although their growth rates were declining in this area.

  • The most published topic cluster for corporates was Wind Power | Electric Power Transmission Networks | Electric Power Distribution, mainly driven by the Chinese corporates.

From research to patents

The period 2001–2020 saw strong growth for patents citing NØEnergy research publications, with China, the United States, Japan and Germany being dominant players.

Not only have the numbers of patents citing N0Energy grown exponentially, the numbers of patent filings (专利申请) grew by similar ranges.

  • The largest shares of patents citing NØEnergy publications are found in the technology clusters Electronics, Electric Power and Semiconductors (43%), Chemistry (23%), Information Technologies (12%), Physics (8%), and Telecommunications (5%).
  • Among the top 10 inventor countries globally, China’s annual patent publications started to grow in 2008, driving the almost exponential global growth through to 2020.
  • By 2015, China was the country with the biggest patent portfolio in NØEnergy research, surpassing the United States in 2012 and Japan in 2014. By the end of 2020, almost half of the global active patents related to NØEnergy research were from China.
  • By the end of 2020, two-thirds of all NØEnergy patent families focused on GHG Emission Reduction.

Policy implications

NØEnergy research receives only slightly more attention from policymakers and online audiences than comparable research fields. Yet considering the urgency of addressing climate change through NØEnergy research, the field should be grabbing the attention of policymakers, online media and knowledge sources. However, some smaller topics do fair better.

  • NØEnergy publications in Climate Action (SDG 13) are much more likely to be taken up in policy documents than those in Clean and Affordable Energy (SDG7).

  • In policymaking, NØEnergy research has been repeatedly taken up by governmental agencies such as the European Commission, the US government, and the German Umwelt Bundesamt.

  • NØEnergy research has also informed the work of inter-organizational bodies and think tanks, including the World Bank, the Wuppertal Institut and the IPCC.

  • NØEnergy research conducted in collaboration with low-income countries (LICs) and US-based researchers is the most likely to result in policy-related or news uptake.

  • The highest proportion of uptake in policy-related reports was associated with the NØEnergy publications produced by Dutch researchers.

Conclusions and future outlook

While the indicators are positive for net zero research and the transition to a clean energy future, more targeted, coordinated research in key areas, together with more collaborative efforts between the Global North and South, as well as initiatives by and for the Global South, are required to ensure that all countries and regions have access to the expertise and technologies needed to build capabilities at the local level to tackle climate change and make progress towards net zero.