Common pronunciations (in British English - Gimson,1981) of mathematical and scientific symbols are given in the list below.

(all the pages in this section need a unicode font installed - e.g. Arial Unicode MS, Doulos SIL Unicode, Lucida Sans Unicode - see: The International Phonetic Alphabet in Unicode).

The content is compiled from the website of UEfAP, Pronunciation of mathematical expressions by H. V¨aliaho and American Pronunciation of Mathematics by Rensselaer Polytechnic Institute, USA.

Table of Contents

Symbols

+ plus
- minus
± plus or minus
x multiplied by
/ over; divided by
÷ divided
= equals
approximately, similar /ə’prɒksɪmətlɪ/
equivalent to; identical
not equal to
> greater than
< less than
greater than or equal to
less than or equal to
not greater than
not less than
much greater than
much less than
perpendicular to /pɜːpən'dɪkjʊlə tʊ/
∣∣ parallel to
not equivalent to, not identical to
≄≉ not similar to
² squared /'skweəd/
³ cubed /'kju:bd/
to the fourth; to the power four
n to the n; to the nth; to the power n
root; square root
cube root
fourth root
! factorial /fæk'tɔːrɪəl/
% percent
infinity /ɪn’fɪnətɪ/
varies as; proportional to /
˙ dot
¨ double dot
: is to, ratio of
f(x) fx f; function
f'(x) f dash; derivative /dæʃ/ /dɪ'rɪvətɪv/
integral /'ɪntɪgrəl/
sum
w.r.t. with respect to
log log /lɒg/
log₂x log to the base 2 of x
${ln}_y$ log y to the base e / log to the base e of y / natural log (of) y
therefore
because
gives, leads to, approaches
/ per
belongs to; a member of; an element of
does not belong to; is not a member of; is not an element of
contained in; a proper subset of
contained in; subset
intersection
union
for all
there exists
cos x cosine x /‘kəʊsaɪn/
sin x sine x /saɪn/
tan x tangent x /’tæn(d)ʒ(ə)nt/
cosec x cosec x /‘kəʊsek/
sinh x shine x /‘ʃaɪn/
cosh x cosh x /‘kɒʃ/
tanh x than x /tæntʃ/
|x| absolute value of x(if x is a real number); modulus x(if x is a complex number, 模数) /mɒd/ /'mɒdjʊləs/
degrees Centigrade /dɪ'gri:z 'sentɪgreɪd/
degrees Fahrenheit /dɪ'gri:z 'færənhaɪt/
°K degrees Kelvin /dɪ'gri:z 'kelvɪn/
0°K, –273.15 °C absolute zero
mm millimetre /‘mɪlɪmiːtə/
cm centimetre /‘sentɪmiːtə/
cc, cm³ cubic centimetre, centimetre cubed
m metre /‘miːtə/
km kilometre /kɪ’lɒmɪtə/
mg milligram /'mɪlɪgræm/
g gram /græm/
kg kilogram /‘kɪləgræm/
AC A.C. /eɪ si:/
DC D.C. /di: si:/

Examples

x + 1 x plus one
x -1 x minus one
x ± 1 x plus or minus one
xy x y; x times y; x multiplied by y
(x — y)(x + y) x minus y, x plus y
x/y x over y; x divided by y;
x ÷ y x divided by y
x = 5 x equals 5; x is equal to 5
x ≈ y x is approximately equal to y
x ≡ y x is equivalent to y; x is identical with y
x ≠ y x is not equal to y
x > y x is greater than y
x < y x is less than y
x ≥ y x is greater than or equal to y
x ≤ y x is less than or equal to y
0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 1
0 ≤ x ≤ 1 zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1
x squared
x cubed
$x_4$ x to the fourth; x to the power four
$x_n$ x to the n; x to the nth; x to the power n
$x_(-n)$ x to the minus n; x to the power of minus n
$\sqrt[2]{x}$ root x; square root x; the square root of x
$\sqrt[3]{x}$ the cube root of x
$\sqrt[4]{x}$ the fourth root of x
$\sqrt[n]{x}$ the nth root of x
(x + y)² x plus y all squared
(x/y)² x over y all squared
n! n factorial; factorial n
$\hat x$ x hat
$\bar x$ x bar
$\tilde x$ x tilde
$x_i$ xi / x subscript i / x suffix i / x sub i
x% x percent
infinity
x ∝ y x varies as y; x is (directly) proportional to y
x ∝ 1/y x varies as one over y; x is indirectly proportional to y
x dot
x double dot
f(x) fx f of x; the function of x
f'(x) f dash x; the (first) derivative of f with respect to x
f''x f double-dash x; the second derivative of f with respect to x
f'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to x
f(4) f four x; the fourth derivative of f with respect to x
∂v the partial derivative of v
∂v/∂θ delta v by delta theta, the partial derivative of v with respect to θ
∂²v/∂θ² delta two v by delta theta squared; the second partial derivative of v with respect to θ
dv the derivative of v
dv/dθ d v by d theta, the derivative of v with respect to theta
d²v/dθ² d 2 v by d theta squared, the second derivative of v with respect to theta
integral
$\int_0^\infty x$ integral from zero to infinity of x
$\sum_{i=1}^{n}x$ the sum from i equals 1 to n of x
w.r.t. with respect to
$log_e\,\mathrm{y}$ log to the base e of y; log y to the base e; natural log (of) y
therefore
because
p ⇒ q p implies q / if p, then q
p ⇔ q p if and only if q /p is equivalent to q / p and q are equivalent
gives, approaches
Δx → 0 delta x approaches zero
$\lim_{\Delta x \to 0}f(x)$ the limit as delta x approaches zero, the limit as delta x tends to zero
${Lt}_{\Delta x \to 0}$ the limit as delta x approaches zero, the limit as delta x tends to zero
m/sec metres per second
x ∈ A x belongs to A; x is a member of A; x is an element of A
x ∉ A x does not belong to A; x is not a member of A; x is not an element of A
A ⊂ B A is contained in B; A is a proper subset of B
A ⊆ B A is contained in B; A is a subset of B
A ⋂ B A intersection B
A ⋃ B A union B
cos x cosine x
sin x sine x
tan x tangent x, tan x
cosec x cosec x
sinh x shine x
cosh x cosh x /kɒʃ/
tanh x than x /tæntʃ/
|x| absolute value of x; modulus x
18 ℃ eighteen degrees Centigrade
70 ℉ seventy degrees Fahrenheit
$\mathit{exp}(x)$, ex exponential of x, e to the x
scalar product of v and w

Greek alphabet

Α α alpha /‘ælfə/
Β β beta /‘bi:tə/
Γ γ gamma /'gæmə/
Δ δ delta /'deltə/
Ε ε epsilon /'epsilən/
Ζ ζ zeta /‘ziːtə/
Η η eta /'iːtə/
Θ θ theta /'θiːtə/
Ι ι iota /aɪ’əʊtə/
Κ κ kappa /‘kæpə/
Λ λ lamda /’læmdə/
Μ μ mu /'mjuː/
Ν ν nu /'njuː/
Ξ ξ xi /'ksaɪ/
Ο ο omicron /‘əʊmɪkrən/
Π π pi /‘paɪ/
Ρ ρς rho /‘rəʊ/
Σ σ sigma /‘sɪgmə/
Τ τ tau /'tɑʊ/
Υ υ upsilon /‘jʊpsɪlən/
Φ φ phi /'faɪ/
Χ χ chi /'kaɪ/
Ψ ψ psi /'psaɪ/
Ω ω omega /'əʊmɪgə/

Fractions

½ a half /ə 'hɑ:f/
¼ a quarter /ə 'kwɔːtə/
¾ three quarters /θriː 'kwɔːtəz/
a third /ə ‘θɜ:d/
two thirds /tu: 'θɜ:dz/
a fifth /ə 'fɪfθ/
two fifths /tu: 'fɪfθs/
three fifths /θriː ‘fɪfθs/
four fifths /fɔː ‘fɪfθs/
a sixth /ə ‘sɪksθ/
five sixths /faɪv ‘sɪksθs/
an eighth /ən 'eɪtθ/
three eighths /θriː ’eɪtθs/
five eighths /faɪv ’eɪtθs/
seven eighths /sevən ’eɪtθs/

Pay attention to “s” on the end of some denominators and a or an at the beginning of some numerators

Decimal Fractions 1

0.1 nought point one /nɔ:t pɔɪnt wʌn/

Nought is for the British English, while zero for the American English


0.01 nought point oh one /nɔ:t pɔɪnt əʊ wʌn/
0.0001 nought point oh oh oh one /nɔ:t pɔɪnt əʊ əʊ əʊ wʌn/
1.1 one point one
1.2 one point two
1.23 one point two three
1.0123 one point oh one two three
10.01 ten point oh one
21.57 twenty-one point five seven
2.6666666666.... two point six recurring
2.612361236123... two point six one two three recurring
2.5 million two point five million

SI Units: Prefixes

$10^{-24}$ yocto y /‘jɒktəʊ/
$10^{-21}$ zepto z /‘zeptəʊ/
$10^{-18}$ atto a /‘atəʊ/
$10^{-15}$ femto f /‘femtəʊ/
$10^{-12}$ pico p /‘pi:kəʊ/
$10^{-9}$ nano n /’nanəʊ/
$10^{-6}$ micro µ /‘maɪkrəʊ/
$10^{-3}$ milli m /‘mɪlɪ/
$10^{-2}$ centi c /‘sentɪ/
$10^{-1}$ deci d /‘desɪ/
$10^{3}$ kilo k /'kɪləʊ/
$10^{6}$ mega M /'megə/
$10^{9}$ giga G /'gɪgə/
$10^{12}$ tera T /'terə/
$10_{15}$ peta P /'petə/
$10^{18}$ exa E /’eksə/
$10^{21}$ zetta Z /‘zetə/
$10^{24}$ yotta Y /‘jɒtə/
$10^{27}$ xona X /‘zəʊnə/
$10^{30}$ weka W /‘wekə/
$10^{33}$ vunda V /‘vʊndə/

Supplementary

$$x_i^j$$
x i j (if j is an index, not an exponent!)

$$(blablabla) · (blbl)$$
blablabla, the whole times blbl

$$x1,… ,xn$$
$x_1$ up to $x_n$

$$ y = {(x-2)}^{(x+1)}$$
y equals the quantity x minus two (pause)all raised to the quantityx plus one

$$ y = {(7+z)}^{\frac{1}{z}}$$
Function f of z equals the quantity seven plus z raised to the one over z power

$$\prod_{k-1}^n \frac{2k+1}{2k+2}$$
Product k equals 1 to n of 2k + 1 over 2k + 2

$$\lim_{x \to \infty} \frac{x}{sinx}$$
The limit as x goes to infinity of x over sine x
the limit as x tends to infinity of x divided by sine

$$\lim_{n \to \infty} \sum_{i=1}^n (\frac{2i}{n})(\frac{2}{n})$$
The limit as n goes to infinity,of the sum from i equals one to n, of two i over n times two over n.


  1. /ˈdesəməl/, e.g. calculations accurate to three decimal places (=one of the numbers after the full stop in a decimal) 精确到小数点后三位的计算. ↩︎